Представим структурные компоненты потоков информации в виде вершин ориентированного графа G=(M,V), дуги которых отражают их связи между собой. Каждая пара вершин Mi и Mj соединена дугой, направленной от Mi к Mj только в том случае, если есть переход информации от Mi к Mj.
Используя свойства графов, можно получить ряд важных характеристик исследуемых потоков информации в системе.
Образуем степенные матрицы смежности R, R2,…,RN и суммарную матрицу R=SNn=1 Rn . Анализ матриц позволяет установить следующие свойства потоков. Порядок компоненты Mj определяется наибольшей длиной пути, соединяющего Mi с Mj. Он равен степени n матрицы смежности Rn при которой Sirj=0. Максимальное значение порядка компоненты Mj определяется наибольший путь от Mi к Mj для всего информационного графа. Исходные данные выделяются при равенстве нулю суммы элементов j столбца матрицы смежности. При равенстве нулю суммы элементов i строки выделяются выходные данные. Значения Si rj >0 и Sj ri>0 равны числу компонентов, соответственно входящих в Mj, и числу результатов, в которые входит Mi. Элемент rij матрицы смежности степени n равен числу путей длиной n, связывающих Mi и Mj. Элементы rij матрицы Rсум дают полное число всех путей от Mi к Mj без укзания длины пути.
Элементы j столбца не равные нулю матрицы Rсум , не равные нулю, позволяют выявить все компоненты, формирующие Mj на всех путях движения данных. Отличные от нуля элементы i строки указывают на результаты в формировании которых используется элемент Mi.
Используя матрицу смежности R и значение порядка можно определить длительность хранения компонентов, являющихся промежуточными по отношению к выходным.
Алгоритм анализа потоков информации представлен в общем виде в приложении 9. Модифицируя алгоритм, можно получить практически все характеристики по взаимодействию элементов в модели АСУ. Фрагмент реальной модели, иллюстрирующей объем и сложность взаимосвязей элементов системы, приведен в приложении 10. Для наглядности в него включены только отдельные массивы информации, и функциональные задачи. По этой причине на фрагменте выделены некоторые из наиболее существенных связей между элементами по входной и выходной информации.
Информационные графы и соответствующие им матрицы смежности можно использовать для определения объемов информации по задачам, группам задач, подсистемам, системе в целом и по любым другим структурным компонентам графа [7, c. 20 – 22].