Современная концепция риска базируется на индо-арабской системе счисления, которая стала известна на Западе семь или восемь столетий назад. Однако серьезное изучение проблем, связанных с риском, началось только во времена Ренессанса, когда люди освободились от многих запретов и подвергли сомнению многовековые застывшие верования.
В 1654 году, когда Ренессанс был в полном расцвете, шевалье де Мере, французский аристократ, в равной степени увлекавшийся азартной игрой и математикой, предложил знаменитому французскому математику Блезу Паскалю решить головоломную задачу. Он поставил вопрос, как разделить между двумя игроками банк в неоконченной азартной игре, если один из игроков в этот момент выигрывает. Математикам была уже известна эта задача, которую сформулировал лет за двести до этого монах Лука Пацциоли, знаменитый тем, что привлек внимание тогдашних дельцов к двойной бухгалтерии и обучил таблице умножения Леонардо да Винчи. Паскаль обратился за помощью к Пьеру де Ферма, адвокату и блестящему математику. Результат их сотрудничества произвел в интеллектуальном мире эффект разорвавшейся бомбы. Случилось так, что анализ распространенной в XVII веке игры (Trivial Pursuit) привел к открытию теории вероятностей, ставшей математической основой теории риска.
Полученное решение головоломки Пацциоли означало, что человек впервые смог в ситуации с неоднозначно определенным исходом принимать решения и предвидеть будущее с помощью чисел. В Средневековье и Древнем мире, так же как в первобытных и земледельческих обществах, люди, сталкиваясь с проблемой выбора, принимали решения без четкого понимания риска, или природы принятия решения. Сегодня мы меньше, чем люди прошлого, полагаемся на суеверия и традиции не потому, что стали умнее, а потому, что наше понимание риска позволяет принимать решения, используя рациональные методы.
Шли годы, математики превратили теорию вероятностей из забавы игроков в могучий инструмент обработки, интерпретации и использования информации. В условиях, когда остроумные идеи громоздились одна на другую, развитие количественных методов анализа риска, подтолкнувших наступление Нового времени, стало неудержимым.
К 1725 году математики уже соревновались друг с другом в составлении таблиц ожидаемой продолжительности жизни, а британское правительство для пополнения бюджета продавало права на пожизненную ренту. К середине XVIII века в Лондоне уже вовсю велись операции по страхованию мореплавания.
В 1703 году Готфрид фон Лейбниц в письме к швейцарскому математику Якобу Бернулли заметил, что «природа установила шаблоны, имеющие причиной повторяемость событий, но только в большинстве случаев». Это замечание подтолкнуло Бернулли к открытию закона больших чисел и разработке методов статистической выборки, получивших широкое применение в столь разных областях, как опросы общественного мнения, дегустация вин, управление складскими запасами и тестирование новых лекарств. Замечание Лейбница — «но только в большинстве случаев» — оказалось более глубоким, нежели он мог предполагать, потому что указывало на огромную роль риска: не будь риска, все было бы предопределено и в мире, где каждое событие идентично предшествующему, даже изменения были бы невозможны.
В 1730 году Абрахам де Муавр установил форму нормального распределения, известного как колоколообразная кривая, и ввел понятие среднего квадратичного отклонения. Оба эти понятия привели к широкоизвестному закону о среднем и являются важнейшими ингредиентами современной техники исчисления риска. Восемь лет спустя Даниил Бернулли, племянник Якоба и тоже выдающийся математик, впервые описал процесс выбора и принятия решений. И что еще важнее, он высказал мысль, что удовлетворение от любого малого приращения богатства «будет обратно пропорционально количеству уже имеющегося добра». Это внешне простодушное утверждение Бернулли объяснило, почему царь Мидас был несчастлив, почему люди неохотно идут на риск и почему нужно снизить цены, чтобы убедить людей покупать большее количество товара. С тех пор закон Бернулли остается главной парадигмой рационального поведения и стал основой современных принципов управления инвестициями.